

Welcome to Django Cast’s documentation!

Contents:

	Django Cast
	Documentation

	Installation Screencast

	Quickstart

	Features Overview

	Running Tests

	Credits

	Features
	Comments

	Content

	Templates

	Deployment
	Locally / Setting up your development machine

	Useful third party services for production

	Heroku

	Setting up your production machine on EC2

	Using a CDN (AWS S3 + Cloudfront)

	Analytics
	Immport your webserver logfile

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.29 (2020-01-03)

	0.1.28 (2019-06-03)

	0.1.27 (2019-05-27)

	0.1.26 (2019-05-23)

	0.1.25 (2019-05-23)

	0.1.24 (2019-05-22)

	0.1.23 (2019-05-16)

	0.1.22 (2019-04-28)

	0.1.21 (2019-04-24)

	0.1.20 (2019-04-24)

	0.1.19 (2019-04-24)

	0.1.18 (2019-04-18)

	0.1.17 (2019-04-15)

	0.1.16 (2019-03-23)

	0.1.15 (2019-03-23)

	0.1.14 (2019-03-23)

	0.1.13 (2019-03-22)

	0.1.12 (2019-03-22)

	0.1.11 (2019-03-21)

	0.1.10 (2019-03-21)

	0.1.9 (2019-03-12)

	0.1.8 (2019-02-28)

	0.1.7 (2019-02-28)

	0.1.6 (2019-02-28)

	0.1.5 (2018-11-21)

	0.1.4 (2018-11-18)

	0.1.3 (2018-11-17)

	0.1.2 (2018-11-08)

	0.1.1 (2018-11-07)

	0.1.0 (2018-11-05)

Django Cast

[image: _images/django-cast.svg]
 [https://badge.fury.io/py/django-cast][image: _images/django-cast1.svg]
 [https://travis-ci.org/ephes/django-cast][image: _images/badge.svg]
 [https://codecov.io/gh/ephes/django-cast][image: _images/code%20style-black-000000.svg]
 [https://github.com/ephes/django-cast]Just another blogging / podcasting package

Documentation

The full documentation is at https://django-cast.readthedocs.io.

Installation Screencast

 Features

Features

Comments

You can enable / disable comments on app, blog and post-level. For app-level,
there’s a global switch you can use in the settings. Blog and post models have
a comments_enabled database field. They are set to True by default.

Settings

Switch to enable/disable comments globally. By default it's False
CAST_COMMENTS_ENABLED = True

Caveats

The ajax-calls django-fluent-comments [https://github.com/django-fluent/django-fluent-comments] does depend on the availability of a
full jquery [https://jquery.com] version. The min-version shipped by cookiecutter-django [https://github.com/pydanny/cookiecutter-django]
is not sufficient, therefore an additional jquery [https://jquery.com] version is loaded on the
post detail page when comments are enabled.

Content

The content of a blog post is just a normal django template. There are some special
templatetags and context variables, though.

Templatetags

There are some templatetags to include media models from uploads into your post content.
If you use the javascript editing frontend the primary keys for media models will be set
automatically.

Image

To include an image, simply use the image templatetag:

{% image 1 %}

The number denotes the primary key of the image model. The templatetag will handle
the srset attribute for you automatically.

Gallery

If you have more than one image you want to display, there’s the gallery templatetag:

{% gallery 1 %}

The number denotes the primary key of the gallery model you want to include. The tag
will build a modal bootstrap dialog to show the included images as well as setting the
srcset attributes for the modally displayed images and the thumbnails.

Video

To include an video, simply use the video templatetag:

{% video 1 %}

The number denotes the primary key of the video model. The templatetag will handle
the poster attribute for you automatically.

Audio

To include an audio model, simply use the audio templatetag:

{% audio 1 %}

The number denotes the primary key of the audio model. The templatetag won’t do that
much, because the player is pure javascript and chaptermarks and other metadata are pulled
from a rest-api by the player [https://podlove.org/podlove-web-player/]. Note that you have to explicitly set the podcast_audio
if you want some audio model included as the podcast episode audio. There can only be
one such model whereas you can link to an arbitrary number of audio models that are
not the podcast episode audio.

Content in post list and detail view

If you want some content only to be visible on the post detail page, just wrap it with
an if-tag that evaluates a contenxt varible set by the list/detail view:

{% if include_detail %}
 This content will only be visible on the post detail page.
{% endif %}

This might be useful for long shownotes-sections you have sometimes for podcast episodes etc..

Templates

There are some ready to use templates included. For example to display the list
of posts or the detail page of a post. Often there are blocks that can be overwritten
to customize the appearance of those templates.

Example Podcast

Feeds

For a podcast like python-podcast.de [https://python-podcast.de] you may want to add the podlove-subscribe-button [https://podlove.org/podlove-subscribe-button/]
instead of having the default feed icon. This is quite easy to accomplish. Just create
a template named templates/cast/post_list.html and set the content to:

{% extends "cast/post_list.html" %}
{% block feeds %}
<p>
<script>window.podcastData={"title":"Python Podcast","subtitle":"Ein deutschsprachiger Podcast rund um die Programmiersprache Python","description":"","cover":"https://d2mmy4gxasde9x.cloudfront.net/cast_images/itunes_artwork/pp_itunes_artwork_3k.png","feeds":[{"type":"audio","format":"aac","url":"https://python-podcast.de/show/feed/podcast/m4a/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"mp3","url":"https://python-podcast.de/show/feed/podcast/mp3/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"ogg","url":"https://python-podcast.de/show/feed/podcast/oga/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"opus","url":"https://python-podcast.de/show/feed/podcast/opus/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"}]}</script><script class="podlove-subscribe-button" src="https://cdn.podlove.org/subscribe-button/javascripts/app.js" data-language="de" data-size="big" data-json-data="podcastData" data-color="#469cd1" data-format="cover" data-style="filled"></script><noscript>Subscribe to feed</noscript>
</p>
{% endblock feeds %}

The javascript snipped was generated by the subscribe-button-generator [https://subscribe-button.podlove.org/#generator] which was also really
easy.

Post Detail Link

Or maybe you want to overwrite the default post detail link if you used “{% if include_detail %}”
to exclude the shownotes of your podcast from the episode list view.

{% extends "cast/post_list.html" %}
{% load i18n %}

{% block detail_link %}

 Shownotes | {% trans "Comments" %} | Permalink

{% endblock detail_link %}

 Deployment

Deployment

Here we describe how to deploy a project named “foobar” to production. We are using
cookiecutter-django [https://github.com/pydanny/cookiecutter-django] for convenience, but this should also be possible with other project
bootstrapping mechanisms.

Contents:

	Locally / Setting up your development machine
	Running the App locally

	Installation using Docker

	Useful third party services for production
	Mailgun

	Sentry

	Amazon S3

	Heroku
	Install the heroku command line app

	Use S3 for storing media files

	Set the configuration variables for heroku

	Deploy your project to heroku

	Use your own domain name with heroku

	SSL

	Caveats

	Setting up your production machine on EC2
	Creating your machine on EC2

	Install required software to run your docker deployment

	Make supervisorctl accessible for normal users

	Make docker-compose runable as normal user

	Reboot

	Check out source

	Convenience

	Keeping the service running with supervisor

	Set the environment variables

	Starting the docker containers manually

	Using supervisorctl

 Locally / Setting up your development machine

Locally / Setting up your development machine

Install virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/] and create a virtual environment for your project:

mkvirtualenv -p /usr/local/bin/python3 foobar

Install cookiecutter [https://cookiecutter.readthedocs.io/en/latest/] into your newly create virtual environment:

pip install cookiecutter

Use the cookiecutter-django [https://github.com/pydanny/cookiecutter-django] template to bootstrap your project:

cookiecutter https://github.com/pydanny/cookiecutter-django

Don’t forget to activate the options for Docker or Heroku if you plan to use them. And
set the “use whitenoise” configutation option to “yes” because this will get your static
file serving on heroku [https://devcenter.heroku.com/articles/getting-started-with-python] work without any additional config. Saying “no” to this, will
try to use aws S3, which I couldn’t get to work (see below).

Enter your new project directory and checkin your first commit:

cd foobar
git init
git add .
git commit -m "first commit"

Optionally you can associate your project dir with a github repository (change
url to match your username/reponame):

git remote add origin git@github.com:your_username/foobar.git
git push -u origin master

Running the App locally

You could also use docker for this, but for now let’s run the development
server locally. At first, add the “django-cast” requirement to your base.txt
requirements file and then install all the required packages into your virtualenv:

echo "django-cast" >> requirements/base.txt
pip install -r requirements/local.txt

You should already have a locally installed postgres server up and running.
Ok, now let’s create the required database user, the database and all its tables.
It’s also very useful to create a django superuser right away:

createdb foobar;createuser foobar; psql -d foobar -c "GRANT ALL PRIVILEGES ON DATABASE foobar to foobar;"
./manage.py migrate
./manage.py createsuperuser

Now you should be able to start your development server locally and see an empty page:

./manage.py runserver_plus 0:8000
open http://localhost:8000/

Your development server should now be reachable at http://localhost:8000

Open only works on mac OS, but you can just point your browser to this url. You should be able
to sign in with your superuser account in the django admin. If you want to sign in regularily,
you have to paste the confirmation url shown on the dev-server console when you try to sign in.

Installation using Docker

Install:

	Docker for your OS

	docker-compose

You need to have set the docker option to “yes” when you created the project diretory.

docker-compose -f local.yml build
docker-compose -f local.yml run django ./manage.py migrate
docker-compose -f local.yml up

Your development server should now also be reachable at http://localhost:8000

 Useful third party services for production

Useful third party services for production

There are some services that might be useful or even required when you run a website. Being
able to send mail for example is quite useful if you want to send newly registered users
a confirmation link.

Mailgun

If you use mailgun as an email service you have to register a mailgun account and set up your
dns records accordingly. One caveat: If you use the eu region you have to change your base api
url in “config/settings/production.py” to:

"MAILGUN_API_URL": env("MAILGUN_API_URL", default="https://api.eu.mailgun.net/v3"),

Sentry

This is the place where tracebacks that occured on the production system get recorded.
You’ll need to signup for an account.

Amazon S3

You’ll probably use S3 for storing uploaded files and for your MEDIA_ROOT.
.. mailgun: https://mailgun.com

 Heroku

Heroku

Install the heroku [https://devcenter.heroku.com/articles/getting-started-with-python] command line app

At first you have to create an heroku account and install the heroku [https://devcenter.heroku.com/articles/getting-started-with-python] command line app.

Then create your app with the heroku client and make your newly created app the default app,
to avoid having to specify it for every heroku toolbelt call with “-a”:

heroku create --buildpack https://github.com/heroku/heroku-buildpack-python --region eu
heroku git:remote -a <name-of-the-app>

Use S3 for storing media files

You probably want to use S3 to store your media files (user uploaded content, images for blog
posts etc). We use django-imagekit [https://github.com/matthewwithanm/django-imagekit] for responsive images and there is some incompatibility
between boto [https://boto3.amazonaws.com/v1/documentation/api/latest/index.html] and django-imagekit [https://github.com/matthewwithanm/django-imagekit] keeping it from working out of the box. Luckily there’s a
workaround. At this custom storage class to your “config/settings/production.py” file and use
it:

import os
from tempfile import SpooledTemporaryFile
...

class CustomS3Boto3Storage(S3Boto3Storage):
 """
 This is our custom version of S3Boto3Storage that fixes a bug in
 boto3 where the passed in file is closed upon upload.

 https://github.com/boto/boto3/issues/929
 https://github.com/matthewwithanm/django-imagekit/issues/391
 """

 location = "media"
 file_overwrite = False
 default_acl = "public-read"

 def _save_content(self, obj, content, parameters):
 """
 We create a clone of the content file as when this is passed to boto3
 it wrongly closes the file upon upload where as the storage backend
 expects it to still be open
 """
 # Seek our content back to the start
 content.seek(0, os.SEEK_SET)

 # Create a temporary file that will write to disk after a specified size
 content_autoclose = SpooledTemporaryFile()

 # Write our original content into our copy that will be closed by boto3
 content_autoclose.write(content.read())

 # Upload the object which will auto close the content_autoclose instance
 super(CustomS3Boto3Storage, self)._save_content(
 obj, content_autoclose, parameters
)

 # Cleanup if this is fixed upstream our duplicate should always close
 if not content_autoclose.closed:
 content_autoclose.close()

...
DEFAULT_FILE_STORAGE = "config.settings.production.CustomS3Boto3Storage"

Using S3 in a non-default region

If you want to use S3 in the region “eu-central-1” you have to set some additional parameters
in your “config/settings/production.py”:

AWS_AUTO_CREATE_BUCKET = True
AWS_S3_REGION_NAME = 'eu-central-1' # if your region differs from default
AWS_S3_SIGNATURE_VERSION = 's3v4'
AWS_S3_FILE_OVERWRITE = True

Using cloudfront as CDN

If you want to deliver your media files via cloudfront there’s an additional option you’ll
have to set:

AWS_S3_CUSTOM_DOMAIN = env('CLOUDFRONT_DOMAIN')

Set the configuration variables for heroku [https://devcenter.heroku.com/articles/getting-started-with-python]

Now we have to setup some heroku specific stuff. For some of the addons you might have to
add credit card information to your heroku account:

heroku addons:create heroku-postgresql:hobby-dev
heroku pg:backups schedule --at '02:00 Europe/Berlin' DATABASE_URL
heroku addons:create heroku-redis:hobby-dev
heroku addons:create mailgun:starter
heroku config:set PYTHONHASHSEED=random
heroku config:set WEB_CONCURRENCY=4
heroku config:set DJANGO_DEBUG=False
heroku config:set DJANGO_SETTINGS_MODULE=config.settings.production
heroku config:set DJANGO_SECRET_KEY="$(openssl rand -base64 64)"
heroku config:set DJANGO_ADMIN_URL="$(openssl rand -base64 4096 | tr -dc 'A-HJ-NP-Za-km-z2-9' | head -c 32)/"
use your own app name here..
heroku config:set DJANGO_ALLOWED_HOSTS=<your_app_name>.herokuapp.com
heroku config:set DJANGO_AWS_ACCESS_KEY_ID=<your_aws_key_id>
heroku config:set DJANGO_AWS_SECRET_ACCESS_KEY=<your_aws_access_key>
heroku config:set DJANGO_AWS_STORAGE_BUCKET_NAME=s3.foobar.com
heroku config:set MAILGUN_DOMAIN=mg.foobar.com
heroku config:set MAILGUN_API_KEY=key-<your_mailgun_key>
heroku config:set MAILGUN_SENDER_DOMAIN=mg.foobar.com
heroku config:set SENTRY_DSN=<your_sentry_dsn>

Deploy your project to heroku [https://devcenter.heroku.com/articles/getting-started-with-python]

After setting all those configuration variables, you should be able to deploy your project
to heroku:

git push heroku master

And create a superuser for your production system:

heroku run python manage.py createsuperuser

Finally you should be able to check your deployment and open the website:

heroku run python manage.py check --deploy
heroku open

Use your own domain name with heroku

Just follow the instructions on the custom-domains [https://devcenter.heroku.com/articles/custom-domains] help site at heroku [https://devcenter.heroku.com/articles/getting-started-with-python].

SSL

Caution: This only works with paid heroku plans (hobby and upwards).

Install letsencrypt client

For paid dynos there’s automatic certificate management with heroku-ssl [https://devcenter.heroku.com/articles/ssl] available.
If you are using a hobby dyno, you have to upload your certificates manually. A first
step is to install certbot on your local machine.

brew install certbot

Prepare your app for verification

Add this to your “config/urls.py” file:

...
 from django.http import HttpResponse
 ...

urlpatterns = [
 ...
 # letsencrypt
 path(
 ".well-known/acme-challenge/{settings.LETSENCRYPT_VERIFICATION_URL}",
 letsencrypt_view,
 name="letsencrypt",
),
 ...

And this to your “config/settings/base.py” file:

Letsencrypt
LETSENCRYPT_VERIFICATION_URL=env("LETSENCRYPT_VERIFICATION_URL")
LETSENCRYPT_VERIFICATION_DATA=env("LETSENCRYPT_VERIFICATION_DATA")

To verify your domain ownership you need to serve a snipped of data under
a specific url. Both provided by letsencrypt if you run this command. Stop
after you see the “Waiting for verification” message from certbot [https://certbot.eff.org/].

sudo certbot certonly --manual

Now you have to set those two letsencrypt environment variables. The cerbot
client will show the content of those variables in the output:

heroku config:set LETSENCRYPT_VERIFICATION_URL=<the_part_after acme-challenge/>
heroku config:set LETSENCRYPT_VERIFICATION_DATA=<the_part_after file containting just this data:>
git add .
git commit -m "added letsencrypt endpoint"
git push heroku master

You should check if you get the correct data from your site. If that’s the case
you can now press <enter> on certbots verification step. If all went well, it will
show you a congratulation message and tell you the location of the certificate.

You now need to add the certificate and key to heroku:

heroku certs:add /etc/letsencrypt/live/your_domain_name/fullchain.pem /etc/letsencrypt/live/your_domain_name/privkey.pem

Caveats

Static Files

I couldn’t get serving static files to work with amazon S3. One problem was that
DJANGO_AWS_STORAGE_BUCKET_NAME in the STATIC_URL setting seems to get ignored by the
static templatetag resulting in a permanent redirect error page from S3. And the
other problem is that S3 didn’t support https (broken certificate). But all static
urls are https by default, so this didn’t work either. Maybe you can fix that by using
a cloudfront distribution etc. but using whitebox to serve static files worked out of
the box.

 Setting up your production machine on EC2

Setting up your production machine on EC2

Creating your machine on EC2

	Generate keypair for your machine

	Use the Ubuntu 16.04 image

	Add rules to security policy to allow ssh/http/https for inbound traffic

	Assign an elastic ip to your instance

Install required software to run your docker deployment

Switch to root user:

sudo su -

Update software on the image:

apt update && apt dist-upgrade

Install Docker [https://www.docker.com/], Supervisor [http://supervisord.org/] and docker-compose to be able to run your production deployment automatically:

apt install python3 python3-pip docker.io supervisor docker-compose

Make supervisorctl accessible for normal users

Change the line chmod=0700 to chmod=0766 in /etc/supervisor/supervisord.conf

Make docker-compose runable as normal user

Add the default ubuntu EC2 user to /etc/group to make docker-compose executable by ubuntu.

usermod -a -G docker ubuntu

Reboot

Reboot the machine:

shutdown -r now

Check out source

Clone foobar [https://github.com/your_github_username/foobar.git] repository into site directory:

git clone git@github.com:your_github_username/foobar.git site

Convenience

Add ‘cd site’ at the and of ~/.bashrc to automatically switch into the project directory on login.

Keeping the service running with supervisor

Create a link to supervisor.conf:

sudo su -
cd /etc/supervisor/conf.d/
ln -s /home/ubuntu/site/foobar.conf foobar.conf
/etc/init.d/supervisor restart

Set the environment variables

Use the env.example template to set the production environment variables in
.env.

Starting the docker containers manually

Make sure the containers are build and the the database relations are
created.

cd site
docker-compose -f production.yml build
docker-compose -f production.yml run django ./manage.py migrate
docker-compose -f production.yml up

Using supervisorctl

Check the service is now running via supervisorctl:

supervisorctl start foobar
supervisorctl status foobar

 Using a CDN (AWS S3 + Cloudfront)

Using a CDN (AWS S3 + Cloudfront)

When using a CDN, s3 with cloudfront for example, there are some settings
to put in your production config which are not really obvious:

AWS_AUTO_CREATE_BUCKET = True
AWS_S3_REGION_NAME = 'eu-central-1' # if your region differs from default
AWS_S3_SIGNATURE_VERSION = 's3v4'
AWS_S3_FILE_OVERWRITE = True
AWS_S3_CUSTOM_DOMAIN = env('CLOUDFRONT_DOMAIN')

Took me some time to figure out these settings. Those are additional settings,
assumed you already used the django-cookiecutter template.

 Analytics

Analytics

There only very limited analytics support here. But it’s possible to import your
webservers access.log.

Immport your webserver logfile

Depends on the format of your logfile. The only supported format at the moment is
caddy.

Create a virtualenv on your production server

At first, create a analytics user via the django admin interface. I gave
it the username ‘analytics’ for convenience. Then create a python virtualenv
to run the collect analytics cronjob. It will read the caddy access.log and
write the requests into to your django-cast Requests model via a rest-API.
You’ll also need pandas in this environment, because the cleanup of request
is done in pandas.

apt install virtualenvwrapper # if you don't already have this installed
apt install libpq-dev # maybe you'll need that for psycopg2 compilation..
mkvirtualenv -p /usr/bin/python3 your_app_name
pip install pandas

Create a local file with all the required environment variables you need to run
django management commands locally - I named it ‘.analytics_env’:

USE_DOCKER=no
DJANGO_AWS_ACCESS_KEY_ID=
DJANGO_AWS_SECRET_ACCESS_KEY=
DJANGO_AWS_STORAGE_BUCKET_NAME=
DJANGO_SETTINGS_MODULE=config.settings.local
USERNAME=analytics
OBTAIN_TOKEN_URL=https://your_domain_name.com/api/api-token-auth/

Be sure that you are now able to run django management commands:

env $(cat .analytics_env | xargs) ./manage.py

Get the api token for your analytics user

If you provide the right password for your analytics user, you should now
be able to retrieve the api token for that user.

env $(cat .analytics_env | xargs) ./manage.py get_api_token

Don’t forget to add the api token to your ‘.analytics_env’:

API_TOKEN=d387ca7e5d2bf4932f1e9e9c9c4caec808571b39

You’ll need to add two additional environment variables to your ‘.analytics_env’:

REQUEST_API_URL=https://your_domain_name.com/api/request/
ACCESS_LOG_PATH=/var/log/caddy/your_domain_name.access.log

Set up a cronjob to run every hour or so to import your logfile

At first, place a shell script named ‘analytics_cron.sh’ in your project dir that you want to
execute as a cronjob. It might look like this:

#!/bin/bash

cd $HOME/your_project_dir
(env $(cat .analytics_env | xargs) $HOME/.virtualenvs/your_env_name/bin/python manage.py access_log_import 2>&1) > access_log_import.log

Make this script executable:

chmod +x analytics_cron.sh

And finally create a cronjob running every hour or something like this:

crontab -e
0 * * * * cd $HOME/your_project_dir && ./analytics_cron.sh

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ephes/django-cast/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Cast could always use more documentation, whether as part of the
official Django Cast docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ephes/django-cast/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-cast for local development.

	Fork the django-cast repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:ephes/django-cast.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv cast
$ workon cast
$ cd django-cast/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 cast tests
$ python runtests.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/ephes/django-cast/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python runtests.py tests -k test_get_post_detail

 Credits

Credits

Development Lead

	Jochen Wersdörfer <jochen-djangocast@wersdoerfer.de>

Contributors

	Dominik Geldmacher <oryon@soila.de>

 History

History

0.1.29 (2020-01-03)

	Use poetry instead of requirements.txt and setup.py

0.1.28 (2019-06-03)

	Added some analytics support: import your access.log and view dashboard with hits/day,week

	Fixed pub_date bug, leading to safari not being able to update posts + some tests

	Use local web-player and subscribe button (didn’t improve performance, though :()

	Fixed detail content not included in feed (shownotes were missing) bug

	Added some deployment documentation for heroku, ec2 and docker

	Overwritable block for detail link in post list template + documentation

0.1.27 (2019-05-27)

	Extended documentation

	It’s now possible to mark content as “for post detail page” only

	Changed documentation to work with comments

	Fixed comments dependencies in setup.py

0.1.26 (2019-05-23)

	Bugfix: i18n should now work, finally!!1 duh

0.1.25 (2019-05-23)

	Bugfix: i18n should now work, finally

	Bugfix: Allow empty chaptermarks text field + test

0.1.24 (2019-05-22)

	Use blog.email as itunes:email instead of blog.user.email

	Added author field to have user editable author name

	Translation should now work since locale dir is included in MANIFEST.in

	Include documentation in package

	Use visible_date as pubDate for feed and sort feed by -visible_date instead of -pub_date

0.1.23 (2019-05-16)

	Comment en/disabling per site/blog/post

	Fix duration extraction and small issues with the installation docs @jnns

	Support for comments by @oryon-dominik

0.1.22 (2019-04-28)

	Use proper time field for chaptermark start instead of char

	Improved test coverage

	Improved video dimension handling for handbrake generated portrait videos

0.1.21 (2019-04-24)

	Fixed package dependencies

	Better release docs

0.1.20 (2019-04-24)

	Fixed version history

	Better release docs

0.1.19 (2019-04-24)

	Added fulltext search

	Added filtering by date + some faceted navigation support

	use overwritable template block for feeds section (could be used for podlove subscribe button)

0.1.18 (2019-04-18)

	Fixed broken update view due to empty chaptermarks + test

	Fixed two image/video javascript bugs

0.1.17 (2019-04-15)

	Added chaptermarks feature

	Duration is now displayed correctly in podlove player

	If an audio upload succeeded, add the uploaded element to podcast audio select form

0.1.16 (2019-03-23)

	Finally, rtfd is working again, including screencast

0.1.15 (2019-03-23)

	Trying again… rtfd still failing

0.1.14 (2019-03-23)

	Added rtfd configuration file to be able to use python 3 :/

0.1.13 (2019-03-22)

	Release to update read the docs

0.1.12 (2019-03-22)

	Improved installation documentation

0.1.11 (2019-03-21)

	Fixed requirements for package

0.1.10 (2019-03-21)

	Dont limit the number of items in feed (was 5 items)

	Workaround for ogg files (ending differs for Audio model field name)

	Added opus format to Audio model

0.1.9 (2019-03-12)

	Added some podcast specific fields to post edit form

	If two audio uploads have the same name, add them to the same model instance

	Added audio file support for post edit form

	Show which audio files already were uploaded

0.1.8 (2019-02-28)

	Added support for m4v and improved dimension detection for iOS videos

	Added some tests for different video sources

0.1.7 (2019-02-28)

	forgot linting

0.1.6 (2019-02-28)

	Use filepond for media uploads (images video)

	Improved portrait video support

	Get api prefix programatically from schema

	Fixed link to podcast in itunes (was feed, now it’s post list)

	Set visible date to now if it’s not set

	use load static instead of staticfiles (deprecated)

	Fixed language displayed in itunes (you have to set it in base.py in settings)

	Dont try to be fancy, just display a plain list of feed on top of post list site (and podcast feeds only if blog.is_podcast is True)

0.1.5 (2018-11-21)

	basic feed support (rss/atom) for podcasts

	travis now runs tests with ffprobe, too

	documentation fixes from @SmartC2016 and @oryon-dominik

0.1.4 (2018-11-18)

	Include css via cast_base.html

	audio fixes

0.1.3 (2018-11-17)

	Fixed css/static icons

	Merged pull request from SmartC2016 to fix javascript block issue

	Added some documentation

0.1.2 (2018-11-08)

	Added some requirements

	Release Documentation

0.1.1 (2018-11-07)

	Travis build is ok.

0.1.0 (2018-11-05)

	First release on PyPI.

 Index

Index

 Comments

Comments

You can enable / disable comments on app, blog and post-level. For app-level,
there’s a global switch you can use in the settings. Blog and post models have
a comments_enabled database field. They are set to True by default.

Settings

Switch to enable/disable comments globally. By default it's False
CAST_COMMENTS_ENABLED = True

Caveats

The ajax-calls django-fluent-comments [https://github.com/django-fluent/django-fluent-comments] does depend on the availability of a
full jquery [https://jquery.com] version. The min-version shipped by cookiecutter-django [https://github.com/pydanny/cookiecutter-django]
is not sufficient, therefore an additional jquery [https://jquery.com] version is loaded on the
post detail page when comments are enabled.

 Content

Content

The content of a blog post is just a normal django template. There are some special
templatetags and context variables, though.

Templatetags

There are some templatetags to include media models from uploads into your post content.
If you use the javascript editing frontend the primary keys for media models will be set
automatically.

Image

To include an image, simply use the image templatetag:

{% image 1 %}

The number denotes the primary key of the image model. The templatetag will handle
the srset attribute for you automatically.

Gallery

If you have more than one image you want to display, there’s the gallery templatetag:

{% gallery 1 %}

The number denotes the primary key of the gallery model you want to include. The tag
will build a modal bootstrap dialog to show the included images as well as setting the
srcset attributes for the modally displayed images and the thumbnails.

Video

To include an video, simply use the video templatetag:

{% video 1 %}

The number denotes the primary key of the video model. The templatetag will handle
the poster attribute for you automatically.

Audio

To include an audio model, simply use the audio templatetag:

{% audio 1 %}

The number denotes the primary key of the audio model. The templatetag won’t do that
much, because the player is pure javascript and chaptermarks and other metadata are pulled
from a rest-api by the player [https://podlove.org/podlove-web-player/]. Note that you have to explicitly set the podcast_audio
if you want some audio model included as the podcast episode audio. There can only be
one such model whereas you can link to an arbitrary number of audio models that are
not the podcast episode audio.

Content in post list and detail view

If you want some content only to be visible on the post detail page, just wrap it with
an if-tag that evaluates a contenxt varible set by the list/detail view:

{% if include_detail %}
 This content will only be visible on the post detail page.
{% endif %}

This might be useful for long shownotes-sections you have sometimes for podcast episodes etc..

 cast

cast

 Templates

Templates

There are some ready to use templates included. For example to display the list
of posts or the detail page of a post. Often there are blocks that can be overwritten
to customize the appearance of those templates.

Example Podcast

Feeds

For a podcast like python-podcast.de [https://python-podcast.de] you may want to add the podlove-subscribe-button [https://podlove.org/podlove-subscribe-button/]
instead of having the default feed icon. This is quite easy to accomplish. Just create
a template named templates/cast/post_list.html and set the content to:

{% extends "cast/post_list.html" %}
{% block feeds %}
<p>
<script>window.podcastData={"title":"Python Podcast","subtitle":"Ein deutschsprachiger Podcast rund um die Programmiersprache Python","description":"","cover":"https://d2mmy4gxasde9x.cloudfront.net/cast_images/itunes_artwork/pp_itunes_artwork_3k.png","feeds":[{"type":"audio","format":"aac","url":"https://python-podcast.de/show/feed/podcast/m4a/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"mp3","url":"https://python-podcast.de/show/feed/podcast/mp3/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"ogg","url":"https://python-podcast.de/show/feed/podcast/oga/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"},{"type":"audio","format":"opus","url":"https://python-podcast.de/show/feed/podcast/opus/rss.xml","directory-url-itunes":"https://podcasts.apple.com/de/podcast/python-podcast/id1445331513"}]}</script><script class="podlove-subscribe-button" src="https://cdn.podlove.org/subscribe-button/javascripts/app.js" data-language="de" data-size="big" data-json-data="podcastData" data-color="#469cd1" data-format="cover" data-style="filled"></script><noscript>Subscribe to feed</noscript>
</p>
{% endblock feeds %}

The javascript snipped was generated by the subscribe-button-generator [https://subscribe-button.podlove.org/#generator] which was also really
easy.

Post Detail Link

Or maybe you want to overwrite the default post detail link if you used “{% if include_detail %}”
to exclude the shownotes of your podcast from the episode list view.

{% extends "cast/post_list.html" %}
{% load i18n %}

{% block detail_link %}

 Shownotes | {% trans "Comments" %} | Permalink

{% endblock detail_link %}

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Cast’s documentation!

 		
 Django Cast

 		
 Documentation

 		
 Installation Screencast

 		
 Quickstart

 		
 Features Overview

 		
 Running Tests

 		
 Install Dependencies

 		
 Run Tests

 		
 Credits

 		
 Features

 		
 Comments

 		
 Settings

 		
 Caveats

 		
 Content

 		
 Templatetags

 		
 Content in post list and detail view

 		
 Templates

 		
 Example Podcast

 		
 Deployment

 		
 Locally / Setting up your development machine

 		
 Running the App locally

 		
 Installation using Docker

 		
 Useful third party services for production

 		
 Mailgun

 		
 Sentry

 		
 Amazon S3

 		
 Heroku

 		
 Install the heroku command line app

 		
 Use S3 for storing media files

 		
 Set the configuration variables for heroku

 		
 Deploy your project to heroku

 		
 Use your own domain name with heroku

 		
 SSL

 		
 Caveats

 		
 Setting up your production machine on EC2

 		
 Creating your machine on EC2

 		
 Install required software to run your docker deployment

 		
 Make supervisorctl accessible for normal users

 		
 Make docker-compose runable as normal user

 		
 Reboot

 		
 Check out source

 		
 Convenience

 		
 Keeping the service running with supervisor

 		
 Set the environment variables

 		
 Starting the docker containers manually

 		
 Using supervisorctl

 		
 Using a CDN (AWS S3 + Cloudfront)

 		
 Analytics

 		
 Immport your webserver logfile

 		
 Create a virtualenv on your production server

 		
 Get the api token for your analytics user

 		
 Set up a cronjob to run every hour or so to import your logfile

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.29 (2020-01-03)

 		
 0.1.28 (2019-06-03)

 		
 0.1.27 (2019-05-27)

 		
 0.1.26 (2019-05-23)

 		
 0.1.25 (2019-05-23)

 		
 0.1.24 (2019-05-22)

 		
 0.1.23 (2019-05-16)

 		
 0.1.22 (2019-04-28)

 		
 0.1.21 (2019-04-24)

 		
 0.1.20 (2019-04-24)

 		
 0.1.19 (2019-04-24)

 		
 0.1.18 (2019-04-18)

 		
 0.1.17 (2019-04-15)

 		
 0.1.16 (2019-03-23)

 		
 0.1.15 (2019-03-23)

 		
 0.1.14 (2019-03-23)

 		
 0.1.13 (2019-03-22)

 		
 0.1.12 (2019-03-22)

 		
 0.1.11 (2019-03-21)

 		
 0.1.10 (2019-03-21)

 		
 0.1.9 (2019-03-12)

 		
 0.1.8 (2019-02-28)

 		
 0.1.7 (2019-02-28)

 		
 0.1.6 (2019-02-28)

 		
 0.1.5 (2018-11-21)

 		
 0.1.4 (2018-11-18)

 		
 0.1.3 (2018-11-17)

 		
 0.1.2 (2018-11-08)

